Thermodynamic analysis and growth of ZrO2 by chloride chemical vapor deposition
نویسنده
چکیده
Equilibrium calculations were used to optimize conditions for the chemical vapor deposition (CVD) of zirconia. The results showed zirconia formation would occur at high oxygen to zirconium atomic ratios (N4), low hydrogen to carbon ratios (b10), low pressures (b105 Pa) and high temperatures (N800 °C). Using these calculations as a guide, single-phase monoclinic zirconia coatings were deposited onto 2-cm diameter αalumina substrates. The maximum growth rate achieved was 2.46 mg cm h. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
The Impact of Cadmium Loading In Fe/Alumina Catalysts and Synthesis Temperature on Carbon Nanotubes Growth by Chemical Vapor Deposition Method
We evaluated the effect of Fe/Alumina Catalyst contained different Cadmium contents and two synthesis temperatures on producing carbon nanotubes by chemical vapor deposition of methane as a feedstock. X-ray powder diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and Thermogravimetry analysis (TGA) were u...
متن کاملGrowth of carbon nanostructures upon stainless steel and brass by thermal chemical vapor deposition method
The lack of complete understanding of the substrate effects on carbon nanotubes (CNTs) growth poses a lot oftechnical challenges. Here, we report the direct growth of nanostructures such as the CNTs on stainless steel 304and brass substrates using thermal chemical vapor deposition (TCVD) process with C2H2 gas as carbon sourceand hydrogen as supporting gas mixed in Ar gas flow. We used an especi...
متن کاملChemical Vapor Deposition Synthesis of Novel Indium Oxide Nanostructures in Strongly Reducing Growth Ambient
The current study reports some interesting growth of novel In2O3 nanostructures using ambient-controlled chemical vapor deposition technique in the presence of a strongly reducing hydrazine ambient. The experiments are systematically carried out by keeping either of the carrier gas flow rate or the source temperature constant, and varying the other. For each of the depositions, the growth is st...
متن کاملNumerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate
The growth rate and uniformity of Carbon Nano Tubes (CNTs) based on Chemical Vapor Deposition (CVD) technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon...
متن کاملEffects of Furnace and Inlet Gas Mixture Temperature on Growing Carbon Nanotube in a CVD Reactor
Carbon nanotubes (CNTs), nowadays, are one of the important nanomaterials that can be produce with different methods such as chemical vapor deposition (CVD). Growing of CNTs via CVD method can be influenced by several operating parameters that can affect their quality and quantity. In this article, the effects of inlet gas mixture temperature on CNT’s local growth rate, total production, and le...
متن کامل